Edinformatics Home


Today is
Science (general): Science Daily, Space.com, Science News, Nature...
Science (specific):
Cancer, Biotech, Space, Astronomy, Physics, Chemistry
Health and Medicine: Selected articles from New York Times..


The first quantum machine

UCSB Physicists Show Theory of Quantum Mechanics Applies to the Motion of Large Objects

Science, the publication of the American Association for the Advancement of Science (AAAS), cited the UC Santa Barbara researchers for designing "a gadget that moves in ways that can only be described by quantum mechanics — the set of rules that governs the behavior of tiny things like molecules, atoms, and subatomic particles. In recognition of the conceptual ground this experiment breaks, the ingenuity behind it, and its many potential applications, Science has called this discovery the most significant scientific advance of 2010."

March 17, 2010 Santa Barbara, Calif.) –– Researchers at UC Santa Barbara have provided the first clear demonstration that the theory of quantum mechanics applies to the mechanical motion of an object large enough to be seen by the naked eye. Their work satisfies a longstanding goal among physicists.

In a paper published in the March 17 issue of the advance online journal Nature, Aaron O'Connell, a doctoral student in physics, and John Martinis and Andrew Cleland, professors of physics, describe the first demonstration of a mechanical resonator that has been cooled to the quantum ground state, the lowest level of vibration allowed by quantum mechanics. With the mechanical resonator as close as possible to being perfectly still, they added a single quantum of energy to the resonator using a quantum bit (qubit) to produce the excitation. The resonator responded precisely as predicted by the theory of quantum mechanics.

"This is an important validation of quantum theory, as well as a significant step forward for nanomechanics research," said Cleland.

The researchers reached the ground state by designing and constructing a microwave-frequency mechanical resonator that operates similarly to –– but at a higher frequency than –– the mechanical resonators found in many cellular telephones. They wired the resonator to an electronic device developed for quantum computation, a superconducting qubit, and cooled the integrated device to temperatures near absolute zero. Using the qubit as a quantum thermometer, the researchers demonstrated that the mechanical resonator contained no extra vibrations. In other words, it had been cooled to its quantum ground state.

The researchers demonstrated that, once cooled, the mechanical resonator followed the laws of quantum mechanics. They were able to create a single phonon, the quantum of mechanical vibration, which is the smallest unit of vibrational energy, and watch as this quantum of energy exchanged between the mechanical resonator and the qubit. While exchanging this energy, the qubit and resonator become "quantum entangled," such that measuring the qubit forces the mechanical resonator to "choose" the vibrational state in which it should remain.

In a related experiment, they placed the mechanical resonator in a quantum superposition, a state in which it simultaneously had zero and one quantum of excitation. This is the energetic equivalent of an object being in two places at the same time. The researchers showed that the resonator again behaved as expected by quantum theory.

See Also:

Physics research named Breakthrough of the Year

Scientists supersize quantum mechanics

Quantum ground state and single-phonon control of a mechanical resonator --A. D. O’Connell1, M. Hofheinz1, M. Ansmann1, Radoslaw C. Bialczak1, M. Lenander1, Erik Lucero1, M. Neeley1, D. Sank1, H. Wang1, M. Weides1, J. Wenner1, John M. Martinis1 & A. N. Cleland1


Quantum mechanics provides a highly accurate description of a wide variety of physical systems. However, a demonstration that quantum mechanics applies equally to macroscopic mechanical systems has been a long-standing challenge, hindered by the difficulty of cooling a mechanical mode to its quantum ground state. The temperatures required are typically far below those attainable with standard cryogenic methods, so significant effort has been devoted to developing alternative cooling techniques. Once in the ground state, quantum-limited measurements must then be demonstrated. Here, using conventional cryogenic refrigeration, we show that we can cool a mechanical mode to its quantum ground state by using a microwave-frequency mechanical oscillator—a ‘quantum drum’—coupled to a quantum bit, which is used to measure the quantum state of the resonator. We further show that we can controllably create single quantum excitations (phonons) in the resonator, thus taking the first steps to complete quantum control of a mechanical system.

Questions or Comments?
Copyright © 1999 EdInformatics.com
All Rights Reserved.